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FLUID MECHANICS OF DISTILLATION TRAYS (II):
PREDICTION OF FLOW FIELDS ON SOME PRACTICALLY
IMPORTANT SIEVE TRAYSY

Osman A. Basaran® Fred K. Wohlhuter®
Energy Research Section Department of
Chemical Technology Division Chemical Engineering
Oak Ridge National Laboratory University of Tennessee
Oak Ridge, TN 37831-6224 Knoxville, TN 37996

ABSTRACT

Separation processes account for 6% of the annual US energy expendi-
ture, 50% of which is consumed by distillation alone. Therefore, it is not too
surprising that distillation, the work horse of the chemical process industry, is
under attack by emerging technologies based on membranes and adsorption,
whose proponents claim enormous potential savings in energy expenditure.
Moreover, the massive scale of use plus the energy intensiveness implies that
even small improvements in the efficiency of distillation processes can result
in large gains in energy savings. Such improvements can come from devel-
oping a fundamental understanding of the fluid mechanics of tray columns,
which has heretofore been lacking and is the subject of this paper. The flow
on a distillation tray is governed by the equations of mass and momentum
conservation in three-dimensions. These equations are reduced here to a set
of two-dimensional equations by averaging them across the depth of the fluid
film flowing across the tray. The depth-averaged equations are then solved
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by a Galerkin/finite element technique. The evolution of film height and
flow fields are determined for three types of trays that are commonly found
in the laboratory and in actual plants: rectangular trays, circular trays, and
so-called race track trays. Sample results include development and growth
of eddies or zones of recirculation on various types of trays, variation of film
height with position on a tray, and effect of tray geometry, flow rate, and
physical properties on tray holdup. Occurrence of eddies and large height
variations on trays can have detrimental consequences in vapor-liquid con-
tacting operations. Therefore, the new rigorous computations should prove
indispensable in developing column designs that avoid or minimize them.

INTRODUCTION

Lockett et al. (1), among others, have shown that vapor flow is
virtually unmixed in large diameter, industrial-scale columns. Therefore,
knowledge of liquid flow patterns on trays in such columns, which is the
main goal of this paper, should be enough to determine the Murphree tray
efficiency from the point efficiency.

In a previous paper {2), we have outlined a technique based on av-
eraging the governing set of three-dimensional conservation equations across
the thickness of the froth, which reduces them to a set of two-dimensional
equations, to determine the flow on distillation trays and their downcomers.
In (2), steady and time-dependent solutions are presented for situations in
which the flow is invariant in a direction perpendicular to the main flow di-
rection on the tray. In this paper, we remove the restrictions placed on the
flows of (2) and consider the effect of tray geometry on the tray hydraulics.

Specifically, three tray types are considered in this paper, as shown
in Figure 1: (a) a square or rectangular tray, (b} a circular or round tray,
and (¢} a race track tray. In Figure 1, inlet and outlet downcomers of length
D, and Dy and transition regions between the downcomers and the tray of
lengths D; and D4 have been projected onto the plane of the tray for con-

venience of plotting. Although square and circular trays are both simple to
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1-D STEADY AND UNSTEADY SOLUTIONS
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GOAL: DETERMINE 2-D FLOWS ON TYPICAL TRAYS
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FIGURE 1. Some widely used trays: (a) a square or rectangular tray,
(b) a circular or round tray, and (c) a race track tray. Here lengths shown
are dimensionless and have been scaled by the (dimensional) length of
the width of the inlet downcomer.

visualize, a race track tray is at first glance geometrically complex. How-
ever, a race track tray is readily obtained by taking a pie slice and removing

a portion of the pie that touches its center, as shown in Figure 1(c).

The inner and the outer edges of a race track tray are arcs of circles each of

which subtends an angle 4.
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To date, with the exception of (3) and (4), modeling of flows on
practical trays has been performed in an ad hoc manner. By way of example,
Porter et al. (5) and Lockett et al. (6) have assumed that a rectangular flow
region of uniform velocity exists between the inlet and outlet downcomers
of a circular tray and that the flow in the curved region outside this area is
stagnant. Others (see, e.g., (7)) have assumed that the flow on their trays
can be divided into regions: in one of these, the flow is in the direction
of bulk flow and in the other, near the column edge, the flow is entirely
stagnant. Unfortunately, the line of demarcation between the two regions is
unknown and can only be adjusted a posteriori to agree with experimental
observations. Another goal of this paper is to develop the capability to
predict a priori the line of demarcation between regions of bulk flow and
regions in which the fluid is stagnant, or recirculating as a confined eddy, by

numerical analysis without resort to experiments.

THEORY AND COMPUTATIONAL ANALYSIS

Isothermal, steady flow of a fluid on a distillation tray and its down-

comers is governed by the continuity and momentum equations:

pv Vv =-Vp+ V- 1+pg (2)

where v is the velocity vector, p is the density, p is the pressure, 7 is the stress
tensor, and g is the gravitational acceleration. The density p as well as the

viscosity u of the fluid are taken to be constants throughout this paper.
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Because the local froth height h is much less than the lateral tray
dimensions, say L, the governing three-dimensional equations, Eqs. (1) and
(2), can be averaged across the film depth to eliminate terms involving the
vertical component of the velocity and derivatives with respect to the vertical
direction, to give “averaged” two-dimensional equations (8) . If the asymp-
totic thickness of the film in the inlet downcomer sufficiently far upstream
of the flat portion of the tray is h,, then the condition for these shallow flow

equations to hold is that ¢ = h,/L < 1, as shown in (2, 8).

The flow on a tray and its downcomers is determined by three di-
mensionless groups, a Reynolds number, Re, a capillary number, Ca, and
the dimensionless asymptotic film thickness, ¢, and, depending on the type
of tray shown in Figure 1, on several dimensionless geometrical factors and
length scales (all made dimensionless by the width of the downcomers). In
what follows, attention is focused on situations in which the asymptotic film

thickness ¢ = 0.1 and the capillary number Ca = 0.

RESULTS

Figure 2 shows the height profile on a circular tray when Re = 1, 000.
In Figures 2 and 3, flow variables are shown over only one half of the domain
as a circular tray has a two-fold symmetry about the plane y = 1/2 of

Figure 1(b). A pronounced region of local steepening of the height profile,

or a hydraulic jump (9), is apparent in Figure 2 near the centerline. Such
local regions of rapid height variation have already been predicted in one-
dimensional flows (2). However, Figure 2 shows that the hydraulic jump dies
off as one moves from the centerline of the tray to its outer edge where the

tray meets the column wall.
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FIGURE 2. Height profile on a circular tray predicted by solution of the
2-D depth-averaged equations. Here Re = 1,000, Ca = 0, and ¢ = 0.1.

— =

FIGURE 3. Effect of Reynolds number on streamlines on a circular tray
predicted by solution of the 2-D depth-averaged equations: (a) Re = 700
and (b) Re = 1,000. Here Ca =0 and ¢ = 0.1.




12: 02 25 January 2011

Downl oaded At:

FLUID MECHANICS OF DISTILLATION TRAYS. 1I 1239

Figure 3 shows the effect of increasing Re on the flow on a circular
tray. The streamlines shown in Figure 3(2) and (b) demonstrate that a
nearly rectangular flow region of virtually uniform velocity exists between the
inlet and outlet downcomers of a circular tray, as experimentally observed
in (5) and (6). However, Figure 3 makes plain that it is not simply in the
curved region outside this area that the flow is stagnant, i.e. a zone of fluid
recirculation exists. Evidently, the extent of this stagnant zone is a strong
function of Reynolds number and it can extend beyond the the curved region
of the tray, an important design consideration.

Figure 4 shows streamline patterns on two race track trays when
Re = 1,000: in (a), the angle of the arc of the race track tray is 10° and in
(b), it is 70°. Although the variation of froth height on such trays is another
matter, the angle of the arc evidently has little effect on streamlines on race
track trays. It is noteworthy that stagnant zones of fluid recirculation are
absent from this type of tray at any value of the angle of the arc.

Figure 5 shows the effect of Re and tray geometry on tray holdup.
Were the fluid on the tray stagnant, the holdup would equal the asymptotic
film thickness € = 0.1. First, for various tray types, the holdup decreases as
Reynolds number increases, a result that accords with intuition. Second, the
holdup is increased when account is taken of the finiteness of the tray. Third,
among various tray types, the race track trays have the highest holdup.

Figure 6 shows the effect of Re and geometry on the height profile
on various tray types. For purposes of illustration, the height profiles shown
are those along the centerline of the trays. First, as Reynolds number in-
creases, the hydraulic jump moves from the region of the tray near the inlet

downcomer to that near the outlet downcomer. Second, finiteness of the tray
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FIGURE 4. Effect of the angle of the arc on streamlines on a race
track tray predicted by solution of the 2-D depth-averaged equations:
(a) angle of arc § = 10° and (b) # = 70°. Here Re = 1,000, Ca =0 and
e =0.1.
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FIGURE 5. Effect of Reynolds number and geometry on tray holdup.
Here Ca = 0 and € = 0.1,
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FIGURE 6. Effect of Reynolds number and geometry on height profile
along the centerline of the tray: (a) Re = 700 and (b) Re = 1,000. Here

Ca =0 and ¢ = 0.1.



12: 02 25 January 2011

Downl oaded At:

1242 BASARAN AND WOHLHUTER

causes the hydraulic jump to shift upstream of the outlet downcomer relative

to the situation in which the flow is invariant in the y-direction.

CONCLUSIONS

According to the results reported in the previous section and in a re-
lated paper (2), the Galerkin/finite element method is a powerful and accu-
rate technique for theoretical prediction of flow fields and film height profiles
on distillation trays. Moreover, in contrast to previous works on modeling
flows on distillation trays (3, 4), the present analysis is not restricted to

unreasonable values of the parameters or simple tray geometries.

Research is underway to extend the present study in two directions
in the near future. Although a great deal of emprical and experimental
knowledge of flow on distillation trays is available (see, e.g., (10}), these
results were obtained when computational techniques such as those presented
in this paper were not available to guide the experiments. Thus one current
goal is to performn careful flow visualization experiments, with the setup
depicted in Figure 7, to complement the computations. A second emerging
thrust is directed at developing a better understanding of the dynamics of
bubble formation on distillation trays. Preliminary computational studies
on bubble formation (11) have already uncovered fascinating physics that is
likely to have consequences in fields as different from distillation as rheology

and interfacial phenomena.

Further extensions of the single-phase fluid mechanical theories pre-
sented in this paper and in (2) are also needed to model multi-phase, hole
activity, and mass transfer effects, among others. Prado and Fair (12) have

already begun to consider such realistic complications in the modeling of
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FIGURE 7. Experimental setup for fundamental studies of fluid me-
chanics of distillation trays.

the performance of distillation trays albeit taking a more empirical approach
than those presented here and in (2) for describing the hydrodynamics. Suc-
cessful marriage of fluid mechanical theories presented here and in (2) with

the effects considered in (12) is among the ultimate goals of this research.
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